Moving Science Hall.
The Greatest Piece of Work of the Kind Ever Done in the West.

Applied science has had the same platitude on the University campus during the past summer in the moving of Science hall to its new foundation. The problem was the moving of a brick building 80'x15' feet height, three stories, estimated weight, 6,800 tons. The building, from first floor to attic roof, was full of valuable natural history collections and laboratory appliances, but numbering, approximately, six hundred and seventy-five. A broad roadway of cribbing timbers was laid extending several feet beyond the walls of the building in every direction, being carefully leveled from the ground up, so as to secure perfectly level, but uniform bearings at all points over which the rollers must pass.

The pushing screws, about thirty in number, were harnessed, by means of chains and cables, to cribbing timbers under the building and to foot-blocks behind the screw drums, through which the power was applied. The pushing screws worked to length of three and one-half feet in.

the drums, longer drums being substituted when the screws had reached their length, until it became necessary to carry the cables forward under the building, when the shortest drums were again used, and so on through the series.

The work of cutting through the old foundations began June 15, but twelve days passed without revealing much of what was going on beneath—the ragged portholes through which the drums protruded the ends of great beams were suggestive of a battered and abandoned fort, mounting wooden guns. Finally, the weary eight hundred screws were set and began to turn, gently lifting the great structure into the air, when it was supported upon rollers about six inches in diameter and four feet in length.

and Linn S. Welch, Vice President.

The problem was the moving of a brick building 80'x15' feet height, three stories, estimated weight, 6,800 tons. The building, from first floor to attic roof, was full of valuable natural history collections and laboratory appliances, but numbering, approximately, six hundred and seventy-five. A broad roadway of cribbing timbers was laid extending several feet beyond the walls of the building in every direction, being carefully leveled from the ground up, so as to secure perfectly level, but uniform bearings at all points over which the rollers must pass.

The pushing screws, about thirty in number, were harnessed, by means of chains and cables, to cribbing timbers under the building and to foot-blocks behind the screw drums, through which the power was applied. The pushing screws worked to length of three and one-half feet in.

the drums, longer drums being substituted when the screws had reached their length, until it became necessary to carry the cables forward under the building, when the shortest drums were again used, and so on through the series.

One of the most interesting features of the movement was that of turning the building on its axis as it moved forward. In order to pass another building a one-eighth turn was necessary, and a back turn was necessary in order to bring the building over the new foundation. The turning movement was accomplished by "cutting" the rollers, and the adjustment of rollers was so nicely done that the double movement landed the building almost exactly at the required spot. When in place, the building was lowered eighteen inches above, and rested on six hundred screws waiting for the completion of the foundations, already built up within four feet of the required height. The supporting screws were removed one by one as the walls were built up to take their places.

During the progress of the moving many interested people watched the operations, but the person is yet to be found who was able to detect the least movement in the building, or the rollers under it, although it moved a distance of seventeen feet in one day—the greatest distance made in any one day. During the whole time the building was kept at

SCIENCE HALL ON NEW FOUNDATIONS.

not an article was taken from the building for safe-keeping, or moved from its accustomed place to guard against breakage. The contract with the L. P. Fricke company, of Chicago, called for the removal of damage to building or contents, was for a bond of $20,000.

One of the most interesting features of the movement was that of turning the building on its axis as it moved forward. In order to pass another building a one-eighth turn was necessary, and a back turn was necessary in order to bring the building over the new foundation. The turning movement was accomplished by "cutting" the rollers, and the adjustment of rollers was so nicely done that the double movement landed the building almost exactly at the required spot. When in place, the building was lowered eighteen inches above, and rested on six hundred screws waiting for the completion of the foundations, already built up within four feet of the required height. The supporting screws were removed one by one as the walls were built up to take their places.

During the progress of the moving many interested people watched the operations, but the person is yet to be found who was able to detect the least movement in the building, or the rollers under it, although it moved a distance of seventeen feet in one day—the greatest distance made in any one day. During the whole time the building was kept at

DAILY IOWAN

PUBLISHED BY THE STUDENTS OF THE STATE UNIVERSITY OF IOWA

Vol. 5

IOWA CITY, IOWA, FRIDAY, JANUARY 5, 1906

No 65

Society Programmes.

Zet Tonight.

Music.

Declaration—Penicillin.

Debate, "Resolved, That the United States should permanently retain possession of the Philippine islands." Affirmed by Jones and Grippenbury, denied by Pepson and How.

Filiation—Merrill.

Irving Tonight—Sophomore Program.

Debate, "Resolved, That the United States should adopt the English system for prevention ofbery at elec-

NOTRE DAME PRELIMINARY

Monday, January 8, 8 p. m.